MonthApril 2016

2016 Spring AI Project – Floppo Bordo

As my senior year of high school began to slow down and the college hype began to increase, I looked for simple projects to work on while in the midst of the craziness. I spent a while sitting back and looking at the projects I’ve finished this past school year and remembered a couple of other projects from other people that served as inspiration for my personal projects. Since I learned everything I know about AI from watching lectures and demonstrations online, it was a trip down memory lane to go back and watch those videos in particular. One of the projects I looked back at was a machine learning algorithm that used reinforcement learning for Flappy Bird (A popular mobile game), and I remember being amazed at the actual process of learning that the algorithm went through (see that video here). I decided to challenge myself by making my own Flappy Bird AI to benchmark my current progress, especially in comparison to where I was 6 months ago.

First, however, I had to make a Flappy Bird clone. Making it was surprisingly easy, as it has simple rules and doesn’t require a lot of complex algorithms. Flappy Bird is essentially an endless runner, but the player must tap the bird to fly precariously in between pipes (if the player touches one of these pipes they die and have to start over). Since this was just a quick project, I didn’t bother with making images to go over each of the objects, instead using colored rectangles. The blue rectangle is the player, the black rectangles are pipes, and the green rectangle is the ground.

I used my standard Neural Network algorithm with a genetic algorithm for the machine learning AI (read more about Neural Networks here). It uses 4 inputs – the player’s y position (height from the ground), the y positions of the opening between the closest pipes (the lowest point on the top pipe and the highest point on the bottom pipe), and the horizontal distance between the player and the closest pipe. There are 2 hidden layers of 5 nodes each, and 1 output node (if the output node > 0.5, the bird jumps). I used a sigmoid function (1 / (1 + e^-x)) as my activation function. Reward was based on the score at the end of the run and how far the AI moved the bird to the right.

Now onto the results. It actually learned to jump between pipes fairly quickly, but difficulty came when it needed to jump with precision between the pipes. However, after a little bit of time, it mastered the game perfectly.

start

Start of the simulation. You can see the AI has trouble handling its own jump height.

stend

After about 10/15 minutes of runtime, the AI has mastered the art of jumping in between the pipes.

I enjoyed making this project and seeing how far I’ve come. A while ago, I never would have thought I would have been able to make something like this. If you want to see the code for this project, you can get it here.

2016 Spring AI Project – TicTacToe & Brute Search

As my senior year of high school began to slow down and the college hype began to increase, I looked for simple projects to work on while in the midst of the craziness. Looking at the history of Artificial Intelligence, I began to read up on the different methods AI developers used before modern AI existed (Neural Networks would be an example of a modern day technique). I also decided to code this project in Python in order to broaden my skills with other languages (and because Python is pretty fun to use).

Artificial Intelligence for games like TicTacToe and Minimax are prime examples of early stage AI – programs that brute search their way through an entire list of possible situations in order to find the best action to take. However, brute searching only works on games with a small amount of game boards. For instance, Minimax is a really simple game because the amount of choices and paths players can take is very limited. TicTacToe ramps it up a little (about 9! or 362,880 different ways to play the game), but is still feasible with a little bit of load time. Games like chess, however, are almost impossible to brute search just from the sheer amount of games possible (about 10^10^50 games, in fact, there are more games of chess than grains of sand on the Earth). This means that although brute searching is an alright method to use when creating game AI, it isn’t always the most efficient, and other options should be considered the more complex the game is.

One of the main roadblocks I hit along the way on this project was dealing with recursion. I am familiar with recursion and its usefulness, but for more complicated tasks like this, it can become confusing at times (especially writing in an unfamiliar language, might I add). For those who don’t know much about recursion, it’s essentially a function that calls itself in order to simplify a problem. It’s complicated in that its formation is very abstract and you have to keep some key issues in mind while creating recursive functions (i.e., making sure you don’t accidentally create a function that loops indefinitely). After some frustration / hair pulling out, I was able to overcome the challenge and write a program that performs pretty well. Basically, the AI looks at each possible choice it has and finds the probability it will win if it chooses that path taking into consideration all possible game boards extending from that board. After probabilities for each possible spot to play are calculated, the AI chooses the option with the highest probability of success.

Screen Shot 2016-03-31 at 10.24.41 PM

Here the AI is controlling Xs and I am controlling Os. You can see the AI was successfully able to perform a double attack, forcing a win for Xs.

This project was fun to make. Comparing it with the Neural Networks I’ve made this year, It’s amazing to see how far Computer Scientists have come in terms of Artificial Intelligence and the ability for computers to recognize patterns and solve problems. If you want to see the code for this project, you can get it here: https://github.com/mccloskeybr/tictactoe

© 2025 Brendan McCloskey

Theme by Anders NorénUp ↑